Inhibition of (+)-Aristolochene Synthase with Iminium Salts Resembling Eudesmane Cation

Juan A. Faraldos and Rudolf K. Allemann*

School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom

allemannrk@cardiff.ac.uk

Received January 11, 2011

ABSTRACT

Trigonal iminium halides of (4aS,7S)-1,4a-dimethyl- and (4aS,7S)-4a-methyl-7-(prop-1-en-2-yl)-2,3,4,4a,5,6,7,8-octahydroquinolinium ions, aimed to mimic transition states associated with the aristolochene synthase-catalyzed cyclization of (–)-germacrene A to eudesmane cation, were evaluated under standard kinetic steady-state conditions. In the presence of inorganic diphosphate, these analogues were shown to competitively inhibit the enzyme, suggesting a stabilizing role for the diphosphate leaving group in this apparently endothermic transformation.

The aristolochene synthases from the fungi *Penicillium roqueforti* (PR-AS)^{1a,b} and *Aspergillus terreus* (AT-AS)^{1c,d} and the related 5-*epi*-aristoloche synthase (TEAS)² from *Nicotiana tabacum* are among the best characterized sesquiterpene synthases.³ They catalyze the first committed step in the biosynthesis of highly oxygenated mycotoxins including PR toxin^{1b,d,e} and plant phytoalexins such as capsidiol.⁴

PR-AS converts the acyclic substrate FDP (1) to the eremophilane hydrocarbon (+)-aristolochene (4) via a

cascade of carbocationic reactions⁵ involving ionization of the allylic diphosphate **1**, two cyclization reactions, two sequential 1,2-group migrations (H and Me), and a final regio- and stereospecific loss of the 9H β proton (Scheme 1).

ORGANIC LETTERS

2011 Vol. 13, No. 5

1202 - 1205

The formation of (+)-aristolochene (4) by PR-AS is thought to involve highly reactive carbocationic intermediates such as eudesmane cation (3) as well as the neutral sesquiterpene (-)-germacrene A (2). The transient existence of these two enzyme bound intermediates in aristolochene synthases has been inferred from experiments with mechanism-based inhibitors,⁶ substrate analogues^{7,8}

^{(1) (}a) Hohn, T. M.; Plattner, R. D. Arch. Biochem. Biophys. **1989**, 272, 137–143. (b) Cane, D. E.; Wu, Z.; Proctor, R. H.; Hohn, T. M. Arch. Biochem. Biophys. **1993**, 304, 415–419. (c) Cane, D. E.; Prabhakaran, P. C.; Salaski, E. J.; Harrison, P. H. M.; Noguchi, H.; Rawlings, B. J. J. Am. Chem. Soc. **1989**, 111, 8914–16. (d) Cane, D. E.; Kang, I. Arch. Biochem. Biophys. **2000**, 376, 354–364. (e) Jelen, H. H. J. Agric. Food Chem. **2002**, 50, 6569–6574.

^{(2) (}a) Vogeli, U.; Freeman, J. W.; Chappell J. Plant Physiol. **1990**, 93, 182–187. (b) Rising, K. A.; Starks, C. M.; Noel, J. P.; Chappell, J. J. Am. Chem. Soc. **2000**, 122, 1861–1866.

⁽³⁾ Christianson, D. W. Chem. Rev. 2006, 106, 3412-3442.

^{(4) (}a) Whitehead, I. M.; Threlfall, D. R.; Ewing, D. F. *Phytochemistry* **1989**, *28*, 775–779. (b) Whitehead, I. M.; Ewing, D. F.; Threlfall, D. R.; Cane, D. E.; Prabhakaran, P. C. *Phytochemistry* **1990**, *29*, 479–482.

⁽⁵⁾ Cane, D. E. In *Comprehensive Natural Products Chemistry. Isoprenoids Including Carotenoids and Steroids*; Barton, D., Nakanishi, K., Meth-Cohn, Eds.; Cane, D. E., Vol. Ed.; Elsevier: Oxford, UK, 1999; Vol. 2, pp 155–200.

⁽⁶⁾ Cane, D. E.; Bryant, C. J. Am. Chem. Soc. 1994, 116, 12063–12064.

⁽⁷⁾ Cane, D. E.; Tsantrizos, Y. S. J. Am. Chem. Soc. 1996, 118, 10037–10040.

^{(8) (}a) Miller, D. J.; Yu, F. L.; Allemann, R. K. *ChemBioChem* **2007**, 8, 1819–1825. (b) Miller, D. J.; Yu, F. L.; Allemann, R. K *Org. Biomol. Chem.* **2009**, 7, 962–975.

Scheme 1. Biosynthesis of (+)-Aristolochene (4)

Scheme 2

including deuterated forms of FDP (1), 1c,9 aristolochene synthase mutants, 10,11 and more recently, with an ammonium ion inhibitor (9, Scheme 3) designed to mimic eudesmane cation (3). 12a

One of the key reactions implicated in the biosynthesis of (+)-aristolochene (4) is the proton-induced intramolecular cyclization of the flexible hydrocarbon 2 to the highly reactive *trans*-fused bicyclic structure 3 (Schemes 1 and 2). The stereospecificity of this transformation relates to the stable, enzyme-enforced UU-conformation adopted by germacrene A (2) in the active site.¹³

Potential mechanisms accounting for the PR-AS-catalyzed π -cyclization of neutral **2** to eudesmane cation (**3**) are outlined in Scheme 2. The concerted pathaway (path a), which goes by way of transition state A (**TSA**), is in agreement with the transannular interactions¹⁴ known to occur between the endocyclic double bonds of *trans*-cyclodecaScheme 3

1,5-dienes (e.g., germacrene A), which likely increase the π -basicity of the C6–C7 double bond of **2**. In addition, experimental and theoretical support for path a stems respectively from the rapid and exclusive formation of trans-fused eudesmanes (selinenes) from 2 under acidic biomimetic conditions¹⁵ and recent high level ab initio and DFT calculations, in which no evidence of a discrete protonated form of germacrene A was found.¹⁶ However, studies with fluorinated forms of 1, namely 2-, 6-, and 14fluoro-FDP, under PR-AS⁸ and TEAS^{15a} catalysis seem to suggest the carbocationic path b (Scheme 2). In all cases, the presence of the electron-withdrawing fluorine atom led to the disruption of the catalytic cycle at the germacrene A stage and to the exclusive isolation of fluorinated germacrene As. These latter results could be forwarded in support of either a stepwise process involving a discrete carbocation intermediate (**B**, path b) or a concerted reaction mechamism involving a transition state TSA with considerable carbocation character. Following these lines, the possible formation of a stabilized tertiary germacren-7 yl^+ cation/diphosphate ion pair^{12b} (**B**) represents an attractive mechanistic scenario considering the hypothetical involvement of the synthase-anchored diphosphate group (PP_i) as the general acid that could activate germacrene A toward cyclization.¹⁷ Indeed, based on recent X-ray protein crystallographic studies with PR-AS¹⁸ and AT-AS,^{17,19} the transient germacrene-7-yl⁺ cation **B** would be ideally positioned for ion pairing with the newly generated diphosphate counterion after protonation of **2**.

As a continuation of our ongoing efforts¹² to evaluate aza sesquiterpenes as mimics of presumed carbocations generated during PR-AS catalysis, we reasoned that the sp²-hybridized iminium ions 6 and 7 (Scheme 3) should resemble a putative transition state **TSC** or its alternative **TSA** (Scheme 2), assuming that the latter has significant carbocationic character. While tetrahedral ammonium

⁽⁹⁾ Cane, D. E.; Prabhakaran, P. C.; Oliver, J. S.; Mc Ilwaine, D. B. J. Am. Chem. Soc. **1990**, *112*, 3209–3210.

^{(10) (}a) Calvert, M. J.; Ashton, P. R.; Allemann, R. K. J. Am. Chem. Soc. 2002, 124, 11636–11641. (b) Deligeorgopoulou, A.; Taylor, S. E.; Forcat, S.; Allemann, R. K. Chem. Commun. 2003, 2162–2163.
(c) Forcat, S.; Allemann, R. K. Chem. Commun. 2004, 2094–2095.

⁽¹¹⁾ Felicetti, B.; Cane, D. E. J. Am. Chem. Soc. 2004, 126, 7212-7221.

^{(12) (}a) Faraldos, J. A.; Kariuki, B.; Allemann, R. K. J. Org. Chem. 2010, 75, 1119–1125. (b) Faraldos, J. A.; Al-Lami, N.; Allemann R. K. Unpublished results.

⁽¹³⁾ Faraldos, J. A.; Wu, S.; Chappell, J.; Coates, R. M. Tetrahedron 2007, 63, 7733–7742.

⁽¹⁴⁾ Jones, R. V. H.; Sutherland, M. D. Aust. J. Chem. 1968, 21, 2255–2265.

^{(15) (}a) Faraldos, J. A.; Zhao, Y. X.; O'Maille, P. E.; Noel, J. P.; Coates, R. M. *ChemBioChem* **2007**, *8*, 1826–1833. (b) Adio, A. M.; Paul, C.; Tesso, H.; Kloth, P.; König, W. A. *Tetrahedron: Asymmetry* **2004**, *15*, 1631–1635.

⁽¹⁶⁾ Allemann, R. K.; Young, N. J.; Ma, S.; Truhlar, D. G.; Gao, J. J. Am. Chem. Soc. 2007, 129, 13008–13013.

 ⁽¹⁷⁾ Shishova, E. Y.; Di Costanzo, L.; Cane, D. E.; Christianson,
 D. W. *Biochemistry* 2007, *46*, 1941–1951.

⁽¹⁸⁾ Caruthers, J. M.; Kang, I.; Rynkiewicz, M. J.; Cane, D. E.; Christianson, D. W. J. Biol. Chem. 2000, 275, 25533–25539.

⁽¹⁹⁾ Shishova, E. Y.; Yu, F. L.; Miller, D. J.; Faraldos, J. A.; Zhao, Y. X.; Coates, R. M.; Allemann, R. K.; Cane, D. E.; Christianson, D. W.

J. Biol. Chem. 2008, 283, 15431–15439.

analogues of presumed carbocations have been used previously in studies of terpene^{12a,20} and sterol²¹ biosynthesis, and to a lesser extent in protein crystallographic efforts,²² to the best of our knowledge the present study constitutes the first example of trigonal nitrogen-containing species used as mechanistic probes in terpene biosynthesis.²³

Compounds **6** and **7** were easily prepared from imine **5** (Scheme 3), which was available from a previous study.^{12a} The iminium salt **6** was obtained as needles from **5** and methyl iodide in 85% yield,²⁴ while the hydrochloride **7** was quantitatively collected upon exposure of **5** to anhydrous ethereal solutions of hydrogen chloride.

Control experiments demostrate that **6** and **7** were stable in aqueous solutions, despite reports documenting the short lifetime of simple aliphatic iminium ions in water.²⁵ In fact, iminiun ions **6** and **7** were stable at pD 7 for more than 7 days as judged by ¹H NMR measurements (D₂O), in which no hydration or solvolysis products were observed (for details see the Supporting Information). Interestingly, at pH 6.6 (D₂O), no traces of free imine **5** (or the corresponding enamine) were detected in the ¹H NMR spectra of **7**, indicating that at pD = 7 compound **7** exists almost exclusively as the protonated salt.²⁶ On the basis of these observations, **6** and **7** were considered sufficiently stable for evaluation of their inhibitory properties toward PR-AS. As expected, exposure of **6** and **7** to 5% aqueous NaOH afforded the corresponding tertiary enamine **8** and

(21) For leading references see: (a) Rahier, A.; Taton, M.; Benveniste, P. In *Inibition of Sterol Biosynthesis in Higher Plants by Analogues of High Energy Carbocationic Intermediates*; Kuhn, P. J. et al., Eds.; Springer-Verlag: New York, 1990; pp 205–222.3. (b) Abe, I.; Rohmer, M.; Prestwich, G. D. *Chem. Rev.* **1993**, *93*, 2189–2206. (c) Abe, I.; Tomesch, J. C.; Wattanasin, S.; Prestwich, G. D. *Nat. Prod. Rep.* **1994**, *11*, 279–302.

(22) (a) Whittington, D. A.; Wise, M. L.; Urbansky, M.; Coates, R. M.; Croteau, R. B.; Christianson, D. W. *Proc. Natl. Acad. Sci. U.S.A.* **2002**, *99*, 15375–15380. (b) Reinert, D. J.; Balliano, G.; Schulz, G. E. Chem. Biol. **2004**, *11*, 121–126. (c) Vedula, L. S.; Rynkiewicz, M. J.; Pyun, H.-J.; Coates, R. M.; Cane, D. E.; Christianson, D. W. *Biochemistry* **2005**, *44*, 6153–6163. (d) Koksal, M.; Jin, Y.; Coates, R. M.; Croteau, R.; Christianson, D. W. *Nature* **2011**, *469*, 116–120.

(23) For the use of lactams (as dipolar canonical analogous forms of anion-like transition states) in oxidosqualene biosynthesis studies see:
(a) Duriatti, A.; Bouvier-Nave, P.; Benveniste, P.; Schuber, F.; Delprimo, L.; Balliano, G.; Cattel, L. *Biochem. Pharmacol.* 1985, *34*, 2765–2777.
(b) Kuhl, K. K.; Anzalone, L.; Arguropoulos, E. D.; Gayen, A. K.; Spencer, T. A. *Bioorg. Chem.* 1989, *17*, 108–120.

(24) Moynehan, T. M.; Schofield, K.; Jones, R. A. Y.; Katritzky, A. R. J. Chem. Soc. **1962**, 2637–2658.

(25) (a) Eldin, S.; Digits, J. A.; Huang, S.-T.; Jencks, W. P. J. Am. Chem. Soc. **1995**, 117, 6631–6632. (b) Eldin, S.; Jencks, W. P. J. Am. Chem. Soc. **1995**, 117, 4851–4857.

(26) Literature searches with SciFinder turned up a calculated $pK_a = 8.06 \pm 0.40$ for the parent 4a-methyl-2,3,4,4a,5,6,7,8-octahydroquinoline. Clearly the actual pK_a of 7 must be > 8.4

Figure 1. Competitive inhibition of PR-AS with increasing concentrations of iminium ion **6** in (A) the absence and (B) the presence of exogenous PPi ($250 \ \mu$ M).

the free imine **5**, respectively, which upon acid treatment (10% aqueous HCl or TFA) reverted to **6** and **7** as the corresponding hydrochlorides or TFA salts.²⁷

Kinetic evaluation of 6 and 7 with recombinant PR-AS showed that these iminium salts interacted with the synthase rather weakly compared to the tight binding of the natural substrate 1 ($K_{\rm M} = 0.53 \pm 0.21 \ \mu {\rm M}$).^{12a} Although the inhibition studies presented herein clearly indicate that compound 7 acts as a modest competitive inhibitor of PR-AS with a $K_i = 28.4 \pm 3 \ \mu M$ (see the Supporting Information), the abilities of iminium ion 6 to bind to the enzyme were more difficult to determine due to its elevated inhibition constant ($K_i = 219 \pm 17 \,\mu\text{M}$, Figure 1, panel A).²⁸ Intrigued by this unforeseen result and by the possibility that iminium salt 6 could instead act as an alternative nitrogen-containing substrate of PR-AS, a preparative scale incubation with PR-AS was carried out, as described recently.²⁹ However, GC-MS and ¹H NMR (500 MHz) experiments with the crude extracts indicated that compound 6 was not a substrate, despite the inherent

^{(20) (}a) Sandifer, R. M.; Thompson, M. D.; Gaughan, R. G.; Poulter, C. D. J. Am. Chem. Soc. 1982, 104, 7376–7378. (b) Poulter, C. D. Acc. Chem. Res. 1990, 23, 70–77. (c) Steiger, A.; Pyun, H. J.; Coates, R. M. J. Org. Chem. 1992, 57, 3444–3449. (d) McGeady, P.; Pyun, H. J.; Coates, R. M.; Croteau, R. Arch. Biochem. Biophys. 1992, 299, 63–72. (e) Cane, D. E.; Yang, G. H.; Coates, R. M.; Pyun, H. J.; Hohn, T. M. J. Org. Chem. 1992, 57, 3454–3462. (f) Koohang, A.; Coates, R. M.; Owen, D.; Poulter, C. D. J. Org. Chem. 1999, 64, 6–7. (g) Peters, R. J.; Ravn, M. M.; Coates, R. M.; Croteau, R. B. J. Am. Chem. Soc. 2001, 123, 8974–8978. (h) Ravn, M. M.; Peters, R. J.; Coates, R. M.; Croteau, R. J. Am. Chem. Soc. 2001, 123, 8974–8978. (h) Ravn, M. M.; Peters, R. J.; Coates, R. M.; Croteau, R. J. Am. Chem. Soc. 2001, 124, 6998–7006. (i) Roy, A.; Roberts, F. G.; Wilderman, P. R.; Zhou, K.; Peters, R. J.; Coates, R. M. J. Am. Chem. Soc. 2007, 129, 12453–12460. (j) Mann, F. M.; Prisic, S.; Hu, H.; Xu, M.; Coates, R. M.; Peters, R. J.; Coates, R. M.; Deters, R. J.; Coates, R. M. J. Am. Chem. Soc. 2007, 129, 12453–12460. (j) Mann, F. M.; Prisic, S.; Hu, H.; Xu, M.; Coates, R. M.; Peters, R. J. J. Chem. Biol. 2009, 284, 23574–23579.

^{(27) (}a) Leonard, N. J.; Steinhardt, C. K.; Lee, C. J. Org. Chem. **1962**, 27, 4027–4031. (b) Leonard, N. J.; Miller, L. A.; Thomas, P. D. J. Am. Chem. Soc. **1956**, 78, 3463–3468. (c) McKenna, J.; Tuelly, A. J Chem. Soc. **1960**, 945–952. (d) Walker, G. N.; Alkalay, D. J. Org. Chem. **1967**, 32, 2213–2225.

⁽²⁸⁾ The K_i value refers to competitive inhibition.

⁽²⁹⁾ Faraldos, J. A.; O'Maille, P. E.; Dellas, N.; Noel, J. P.; Coates, R. M. J. Am. Chem. Soc. **2010**, 132, 4281–4289.

Scheme 4

electrophilicity of the iminium double bond³⁰ that could potentially drive a 1,2-Me-shift similar to the one observed with the natural substrate ($\mathbf{D} \rightarrow \mathbf{E}$, Scheme 4).³¹

Alternatively, the reduced binding affinity $[K_{\rm M}^{\rm FPP}/K_{\rm i}^6 = 2.5 \times 10^{-3}]$ measured for the iminium salt 6 might reflect imperfections in its design, given that the Mannich intermediate 6^{30} could also be depicted as the canonical α -amino carbocation 6a (Scheme 4). While this alteration in the charge configuration of 6 seems unlikely (vide supra), it would place a positive charge on a carbon atom (C2 in the farnesyl chain) that PR-AS does not confront during the native $2 \rightarrow 3$ cyclization. This observation could potentially explain the weak interaction of 6 (and 7) with PR-AS.

On the presumption that a more tightly bound active site iminium/diphosphate ion pair could form as a consequence of adding inorganic diphosphate to the reaction media, an additional set of experiments was carried out in the presence of exogenous PP_i (mimicking the competent [Mg²⁺]₃-PP_i enzyme complex).^{17,19} In agreement with previous studies with terpene synthases,^{20a,d,e,g-i,22,32} the addition of PP_i (250 μ M)³³ led to a considerably stronger enzymatic interaction for both inhibitors, with approximately 40- ($K_i = 5.9 \pm 1.2 \mu$ M, Figure 1, Panel B) and 70-fold ($K_i = 0.41 \pm 0.19 \mu$ M, see the Supporting Information) decreases in the inhibition constants of **6** and **7**, respectively.

These results are consistent with the binding and ion pairing of the methylated (6) or protonated (7) forms of imine 5 at the PR-AS active site as a consequence of favorable electrostatic (6 and 7) and/or hydrogen bonding interactions (7) between the positively charged iminium nitrogen and an active site bound diphosphate.^{22,34} In agreement with our previous NMR experiments, the significant potency enhancement observed for iminium ion 7 in the presence of diphosphate ions seems to rule out the free Schiff base 5 as the reactive species that binds to PR-AS. Moreover, under these experimental conditions, hydrochloride 7 acts as a potent competitive inhibitor of PR-AS, with a binding affinity constant ($K_i = 0.41 \pm$ 0.19 μ M) almost identical to the Michaelis constant ($K_M^{FDP} = 0.53 \pm 0.21 \mu$ M).^{12a}

The approximately 50-fold decrease in K_i for 6 and 7 by the presence of $250 \,\mu\text{M}$ diphosphate suggests an active role for the enzyme-bound diphosphate ion on the transition state aggregate/composite, likely as a stabilizing agent for the energetically demanding $2 \rightarrow 3$ cyclization. Thus, these observations toghether with the remarkable insensitivity of the ammonium ion analogue 9 (Scheme 3) of carbocation 3 toward the presence of diphosphate^{12a} support an involvement of the diphosphate ion in the protonation step of germacrene A,¹⁷ at the very least by stabilizing a discrete cationic intermediate **B**, or cationic transition states such as TSA or TSC (Scheme 2) previous to eudesmane cation formation. In addition, the 25-fold tighter binding of ammonium salt 9 ($K_i = 0.24 \pm 0.1 \,\mu\text{M}$)^{12a} to the catalytic site of PR-AS relative to 6 ($K_i = 5.9 \pm 2.2 \ \mu M$) could signify that the true transition state involved in the acidassisted cyclization of 2 to cation 3 is "more product-like" and hence better mimicked by the trans-fused aza-decalin 9 (Scheme 3). This proposal of a product-like transition state to explain the PR-AS-catalyzed formation of eudesmane cation (3) will likely satisfy the requirements of a concerted endothermic process $(2 \rightarrow 3 \text{ via TSA}, \text{ path a, Scheme 2})$. However, it does not fully exclude a partially exothermic stepwise mechanism³⁵ ($\mathbf{B} \rightarrow \mathbf{3}$ via **TSC**, path b), assuming that the stabilities of the transient germacrene-7-yl⁺ (**B**) and eudesmene (3) cations are otherwise comparable.³⁶

Acknowledgment. This work was supported by BBSRC grant BB/G003572/1 (R.K.A.) and Cardiff University. The authors thank Dr. Rob Jenkins for help with mass spectrometry and NMR and David Miller for his critical comments on the manusript.

Supporting Information Available. Materials, general methods, and instrumentation; protein production; kinetic plots; and reproduction of NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

^{(30) (}a) Bohme, H.; Vieche, H. G., Eds. *Iminium Salts in Organic Chemistry*, Parts 1 and 2; Willey: New York, 1979. (b) Royer, J.; Bonin, M.; Micouin, L. *Chem. Rev.* **2004**, *104*, 2311–2352. (c) Mayr, H.; Kempf, B.; Ofial, A. R. *Acc. Chem. Res.* **2003**, *36*, 66–77. (d) Arend, M.; Westermann, B.; Risch, N. *Angew. Chem., Int. Ed.* **1998**, *37*, 1044–1070. (e) D'Oca, M. G. M.; Moraes, L. A. B.; Pilli, R. A.; Eberlin, M. N. J. Org. Chem. **2001**, *66*, 3854–3864. (f) Mayr, H.; Ofial, A. R. *Tetrahedron Lett.* **1997**, *38*, 3503–3506.

⁽³¹⁾ The only Et₂O-extractable product detected by GC-MS and ¹H NMR analyses after basic (5% aqueous NaOH) workup of the enzymatic reaction was enamine **8**. The same product **(8)** was observed in control experiments carried out in the absence of enzyme.

^{(32) (}a) Koohang, A.; Bailey, J. L.; Coates, R. M.; Erickson, H. K.; Owen, D.; Poulter, C. D. J. Org. Chem. 2010, 75, 4769–4777. (b) Poulter, C. D.; Capson, T. L.; Thompson, M. D.; Bard, R. S. J. Am. Chem. Soc. 1989, 111, 3734–3739. (c) Croteau, R.; Wheeler, C. J.; Aksela, R.; Oehlschlager, A. C. J. Biol. Chem. 1986, 261, 7257–7263.

⁽³³⁾ It has been shown previously that diphosphate itself does not inhibit the native enzyme from *P. roqueforti*. See ref 1a.

⁽³⁴⁾ Christianson, D. W. *Curr. Opin. Chem. Biol.* **2008**, *12*, 141–150. (35) The coversion of a C=C double bond into two C-C single bonds as a consequence of a Markovnikov carbocationic cyclization (e.g., $\mathbf{B} \rightarrow \mathbf{3}$) is generally exothermic by 20 kcal/mol.

⁽³⁶⁾ Chappell, J.; Coates, R. M. In *Comprehensive Natural Products II: Chemistry and Biology*; Mander, L., Liu, H.-W., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Vol. 1, Chapter 16, p 616.